Dropout With a Difference: Reduce neural net overfitting without impacting accuracy
The technique known as dropout discourages neural networks from overfitting by deterring them from reliance on particular features. A new approach reorganizes the process to run efficiently on the chips that typically run neural network calculations.

The technique known as dropout discourages neural networks from overfitting by deterring them from reliance on particular features. A new approach reorganizes the process to run efficiently on the chips that typically run neural network calculations.
What’s new: Pascal Notin and colleagues at Oxford and Cohere.ai introduced an alternative, SliceOut, that boosts neural network speed with little or no compromise to accuracy.
Key insight: Most operations in deep learning consist of multiplying a matrix of weights by a vector of activations or features. Deleting an input feature means a row of the weight matrix has no effect. Similarly, deleting an output feature means a column has no effect. But the resulting matrix forces the chip that’s processing the calculations to shuttle data in and out of memory, which takes time. By deleting — and keeping — only features that are contiguous in memory, the authors avoided time-consuming memory reallocations.
How it works: In its simplest form, dropout zeroes out a random selection of parameter values or, equivalently, by zeroing out the corresponding weights.
- Controlled dropout saves some processing power by collecting the remaining non-zero weights into a new, smaller weight matrix — but that still requires reallocating memory.
- SliceOut selects contiguous portions of the matrix and zeroes out everything else. This scheme is massively more efficient.
- By analyzing how GPUs compute convolutional and transformer layers, the authors developed SliceOut variants for those layers as well.
Results: The researchers evaluated SliceOut in an image-recognition task using CNNs trained on CIFAR-100, SliceOut matched dropout’s test accuracy but ran trained 33.3 percent faster and required 27.8 percent less memory. SliceOut achieved time savings of 8.4 percent and memory savings of 9 percent with transformer networks on the One Billion Word Benchmark and saved double-digit percentages in fully connected layers on MNIST.
Why it matters: Larger networks often achieve better results in a variety of tasks, but they require regularization techniques to avoid overfitting. SliceOut could enable gargantuan models to run faster than dropout allows without a hardware upgrade.
We’re thinking: As the organizers of Pie & AI, we’ll always try to make sure there’s a slice for you.